A UNION PLUMBERS BODY CAN OVERCOME ALMOST ANYTHING

A UNION PLUMBERS MIND CAN ADAPT AND RESOLVE THE PROBLEM AT HAND

A UNION PLUMBER WILL BE THE BEST THEY CAN BE

THE UNION PLUMBER HAS LEARNED TO CONVINCE THEIR OWN MIND THEY

CAN AND WILL DO IT RIGHT THE FIRST TIME
Water-Related Epidemics

While today we understand that cholera and typhoid are both bacterial diseases and that polio is a viral disease, Chicagoans fought them without this basic knowledge across the nineteenth and into the twentieth centuries. Instead, Chicagoans looked for patterns of epidemic outbreaks and sought ways to prevent the conditions surrounding those outbreaks. Without the aid of germ theory, nineteenth-century public health officials, physicians, and engineers determined that control of water supply and wastewater were crucial to checking these epidemics.

Although they were not the only diseases related to polluted water supply and inadequate sanitation, cholera, typhoid, and polio followed one after the other in Chicago, as sanitarians sought to protect residents from them. Over time, sanitarians found that cholera could be controlled by better water supply. Improving water supply, however, led to more wastewater in and around Chicago, which increased the incidence of typhoid fever. While better plumbing and sanitation helped control typhoid fever, it reinvigorated an old disease like polio, as residents lost what had been a natural immunity to the disease.
Well here we are in April 2020. Being out in the fresh air without wearing a jacket is soothing to the body. The topic I wish to present to our membership this month is Codes and how far back in time did codes start and what codes do we as Protectors and Preventers need to follow.

“The Code of Hammurabi,” written by Hammurabi, the 6th king of Old Babylon, was the first known code of ancient Babylon. One of the clauses of the code called for people to be put to death if a house that was not constructed properly fell and killed an owner. (1700 B.C.) Archaeologists discovered copper water pipes in the palace ruins of the Indus River Valley in India. (4,000 to 3,000 B.C.) Egyptians developed copper pipes that were used to build elaborate bathrooms inside the pyramids and intricate irrigation and sewage systems. (2500 B.C.)

These and other codes were thought up, designed and installed by creative minds of that time in history. Now we use a CADD to design everything from the bed of a footing to the spires that reach the sky. We no longer use hollowed out logs for water mains, but instead use Iron, Plastic, and in the near future maybe even Carbon Fiber. What do codes mean to the plumbing industry? Well without them we wouldn’t understand the hydraulics, and pneumatics of water and air working together in one single plumbing system. Just think 244 plus years ago when our ancestors arrived here they drank the water from the streams and lakes. But now we would get ill from drinking water from streams or lakes without adding some chemical or running it through filtration. Our codes are constructed by professionals and the codes are there for us to read and understand, from the inspired owner, designer, contractor and the installer. Built within our codes we have a number of referenced codes which we must follow when they apply. Some of them are referenced in the most National code books and in the 2014 Illinois Plumbing Code Section 890.130.

When working in Hospitals, Assisted Living/Memory Care Facilities, Dialysis, FDA Facilities, Dairy Facilities among others they are other Plumbing Codes imbedded within their codes. We also have codes for Rainwater Harvesting, Storm water retention or detention. Don’t rely on what the CADD or Print shows rely on the code. If you install it against code you are at fault the violation is yours. When your prints show something that is not up to a Code or Standard bring it to the attention of the designer before continuing, and get clarification.

Best Regards,

Gary W. Howard
2014 State of Illinois Minimum Plumbing Code
FOLLOWING THE STATE PLUMBING CODE

Question from the 2014 State of Illinois Plumbing Code

You shall include section, paragraph and page number.

1. A device supplied with water under positive pressure that passes through an integral orifice, causing a partial vacuum and resulting in movement of fluid by siphonage is called?
 a) Pressure vacuum breaker
 b) Aspirator
 c) Back siphonage
 d) Either a or c
 Section____________Paragraph_____________Page___________________

2. A fitting or device designed and constructed to provide, when properly vented, a liquid seal that will prevent the back passage of air without materially affecting the flow of sewage or waste water through it, is called?
 a) A back water valve
 b) A inline check valve
 c) A house trap
 d) A P-Trap
 Section____________Paragraph_____________Page___________________

3. A device located within the environment to be conditioned that directly transfers its heating energy by radiation or forced or gravity convection is called?
 a) A Furnace
 b) A double wall water heating unit
 c) A double- double wall water heater with an atmosphere relief vent
 d) A Terminal Heating Device
 Section____________Paragraph_____________Page___________________

4. Can a Union be used in a drainage and vent system?
 a) Yes
 b) No
 Section____________Paragraph_____________Page___________________

Submission shall include Name, Mailing Address, e-mail U.A. Card Apprenticeship Number and application
50% off new active member dues on the first year. As a member of ASSE International you will belong to an organization represented by all disciplines of the plumbing and mechanical industries, forming a platform to receive, understand and solve industry problems relating to standards, codes, contracting, engineering, and business. We encourage you to attend Meetings, get involved in chapter activities and apply for national committee work. Whether it’s through planning, or participating in local chapter activities and meetings, submitting articles to our publication, or volunteering on a committee, your involvement is essential to ASSE International success. Now is the time to immerse yourself in your organization.

A few privilege's you will enjoy as an ASSE International member:

- Networking and educational opportunities within our industry
- Free subscription to ASSE International publications *Working Pressure* magazine and *ASSE International* Electronic News Letter
- Discounts on publications published by ASSE International (25% off) and select discounts from other reciprocating organizations
- Voting rights at Annual Meetings

Please read carefully, fill in all applicable sections and indicate the membership classification for which you are applying.

Government applicants must provide proof of employment to be eligible. Please see reverse side for membership classification descriptions, chapters and dues rates. You may also join online at www.assewebstore.com/membership.

CLASSIFICATION: □ ACTIVE □ STUDENT □ GOVERNMENT □ SUSTAINING

Name:
Title:
Company:
Address:
City:
Method of Payment:
 □ VISA □ AmEx □ Check/Money Order □ MasterCard
 □ please invoice me for dues I *You may also join* at *Stores. assewebstore.com*

Credit Card No. ______________ State: Zip: _________ Expiration Date: ___ / ___ CVN*:

Illinois (Chicago) ACT (new) $42.50 STUDENT $30 GOVERNMENT $65 SUSTAINING $300 REGULAR NEW MEMBERSHIP $85.00

MEMBERSHIP CLASSIFICATION DESCRIPTIONS

Active:
Individuals who are active in a plumbing, mechanical or engineering related field.
* Half price new membership only applies to those who are not current or past members of ASSE International. *

Student: Registered apprentices in an apprenticeship program duly recognized by state, federal or local laws governing apprenticeship.
Full time students enrolled in a school, university or college course in either plumbing, plumbing design or engineering. **There is a maximum time limit of five years for membership as a student. **

Government:
Individuals employed by local, county, state or federal agencies involved in regulating the plumbing and mechanical field. Government employees may join ASSE International with the same privileges of an Active member. To qualify, members may be required to submit written documentation confirming that they are actively employed by a government entity (i.e.: letter from government entity on letterhead, copy of government identification/license, etc.)

Sustaining
Manufacturers of plumbing products and appliances, or others who are affiliated with the plumbing and mechanical field and desire to support the work of the organization. One member or representative of such membership will have privileges of an Active member.

ASSE INTERNATIONAL CHAPTERS AND DUES
Including below represents first-year member pricing (50% off new Active member dues). Full rates apply after first year of membership.

At-Large (no nearby chapter)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300

Arizona (Phoenix)
ACT (new) $42.50 STUD $25

California (Los Angeles)
ACT (new) $42.50 STUD $25
GOV $60 SUST $300
GOV $60 SUST $300

Northern California (San Jose)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300

Florida (Dade County Area)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300

Georgia (Atlanta)
ACT (new) $47.50 STUD $25 GOV $60 SUST $300

Illinois (Chicago)
ACT (new) $42.50 STUD $30 GOV $65 SUST $300

International Chapter
ACT (new) $60.00 SUST $300

Louisiana (New Orleans)
ACT (new) $52.50 STUD $25 GOV $80 SUST $300

Michigan (Detroit)
ACT (new) $47.50 STUD $25 GOV $75 SUST $300

Minnesota (Minneapolis)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300

Missouri (St. Louis)
ACT (new) $45.00 STUD $25 GOV $60 SUST $300

Nevada (Las Vegas)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300

New York (New York City)
ACT (new) $75.00 STUD $25 GOV $85 SUST $300

Central Ohio (Columbus)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300
Northern Ohio (Cleveland)
ACT (new) $50.00 STUD $25 GOV $60 SUST $300
Oklahoma (Tulsa)
ACT (new) $50.00 STUD $25 GOV $60 SUST $300
Oklahoma City
ACT (new) $42.50 STUD $25 GOV $60 SUST $300
Pacific Northwest (Oregon)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300
Pennsylvania (Philadelphia)
ACT (new) $45.00 STUD $30 GOV $70 SUST $300
Rocky Mountain (Denver)
ACT (new) $42.50 nuo $25 GOV $60 SUST $300
Texas (Dallas)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300
Texas Gulf Coast (Houston)
ACT (new) $50.00 STUD $45 GOV $70 SUST $300
Wisconsin (Milwaukee)
ACT (new) $42.50 STUD $25 GOV $60 SUST $300
Return to ASSE International:
Membership Department
4755 E. Philadelphia St, Ontario, CA 9176
A city’s sanitation strategy is a deliberate, conscious decision. The demand for sanitation services simultaneously involves a demand for water works, water mains, sewers, and wastewater treatment works. A water supply is a city’s lifeblood, but once brought into the city, water subsequently has to be removed. Lack of a sewer system creates a health hazard, but so does a system that discharges sewage into a city’s water supply. The need for a sanitation strategy has faced cities at every time and place. Water and wastewater works represent public investments that an urban area must make if it is to survive. Strategies require choices, often defined in part by characteristics of a city’s location.

Tap water, for example, must be clean and potable. A city whose water supply does not meet this qualitative standard must allocate more funds to this resource. Cities located on salt water draw their water from a variety of sources, often distant lakes as opposed to adjacent groundwater. At the other end of the process, the salt water itself generally offers the only alternative for wastewater disposal. Historically, salt-water cities have expended large sums of money to bring fresh water to the city and have spent relatively little on wastewater disposal. Cities located on rivers customarily draw water upstream and deposit wastewater downstream, if the river is large enough to supply all the city’s water. If not, the city must supplement the river’s supply with either distant sources or groundwater. The wastewater disposal point must be located so backwash does not threaten the water intake point. Still different are cities located on a freshwater lake. Here, supply and sanitation problems are not separable if the city elects to utilize the lake for both purposes. If alternative sources can be found for either (e.g., a sewage farm), the interdependencies can be reduced or eliminated. Generally, however, freshwater cities adopt strategies opposite to their salt-water counterparts’ inclination to concentrate resources on supply. It makes more sense for them to take advantage of the freshwater on their doorstep and expend large sums of money trying to keep the wastewater away from the city’s water supply intake. To that end, some freshwater cities have moved the water intake point several miles out into the lake.

From the outset, Chicagoans preferred Lake Michigan water to other sources. For many years, the intake point stood close to the mouth of the Chicago, and the water supply was often polluted. After several failed attempts to improve the quality and quality of the water supply, the newly formed Board of Public Works in 1861 asked its engineer, Ellis Sylvester Chesbrough, to identify and assess alternatives. Chesbrough recommended a tunnel dug under the lake to the water intake point two miles offshore; a crib would protect the point. In spite of many difficulties, the tunnel project got underway in 1863, and the last stone was laid in 1866. By 1872, Chicago's continued
rapid growth created a demand that exceeded the tunnel's capacity; fortunately, provision for a second tunnel accompanied construction of the first one. The policy of attempting to avoid pollution by extending the water intake point further into the lake continued until extension was no longer feasible. With continued growth and the annexation of suburban areas, Chicago constructed additional pumping stations, dug new lake tunnels with intakes protected by cribs, and finally in 1898 began the task of combining the several tunnel and pumping systems into an integrated whole. That system, with improvements, is the basis for Chicago's present supply.

Disinfection was introduced in 1916 by adding chlorine to the water supply at the pumping stations. An experimental filtration plant was introduced in 1928 to address continued turbidity. Chicagoans voted in 1930 to construct a major filtration plant on the South Side, but the Depression and World War II delayed its completion until 1947. Chicago's South Water Filtration Plant was the largest water processing facility in the world until the city's Central Water Filtration Plant was completed in 1964. In spite of the abundant quantity of fresh water at Chicago's front door, the city has invested a large amount in maintaining and improving the quality of that water.

Disposal has proven more difficult. In the early nineteenth century, the Chicago River ordinarily was little more than a creek, with banks lying two feet above the water. Normally sluggish, the river discharged large volumes of water in times of heavy rains or melting snows through its short main trunk into Lake Michigan. Chicago’s random waste disposal methods led to a succession of cholera and dysentery epidemics. In 1852, Illinois's legislature empowered sewage commissioners to supervise the installation of sewers in the most densely settled districts and the digging of ditches in the remainder. In 1855 the Board of Sewerage Commissioners was formally charged with supervising the existing sewage and drainage scheme and planning a coordinated system for the future. Systematic sewage disposal and drainage was unknown in the United States, and in 1855 Chicago was in a position to become the first large American city to build a comprehensive sewer system.

Chesbrough designed a combined sewer system (one that collects wastes from both residences and streets) that emptied into the Chicago River. Drainage was to be accomplished by gravity, but Chicago’s flat topography proved unfavorable to sewer construction. In reality, the task of constructing underground sewers required raising the city's grade. As sewer construction progressed away from the river, the streets had to be raised. The sewers were laid on top of the ground, then earth largely dredged from the river was filled in around them, covering them entirely. New, paved streets were constructed above the sewers.

The Chicago River evidently was innocuous for the first few years following installation of the new sewers, but soon the river became polluted, particularly the South Branch where much of the city’s industry was located. Simultaneously, the city discovered that the Illinois and Michigan Canal pumps were moving the river’s pollution into the canal. This important discovery meant that Chicago could avoid using Lake Michigan as a wastewater depository, thereby conserving the Lake Michigan water supply. In the late 1860s the canal was deepened yet again to enlarge its sewage handling capabilities, and additional pumps were installed. These enlarged facilities, completed in 1871, formally reversed the Chicago River's normal current, as the pumps pulled Lake Michigan water through the river to provide the canal’s summit level.

With Chicago’s continued growth, this system could not maintain the reversal under adverse weather conditions; the Chicago River, and often Lake Michigan, remained polluted. The solution was to enlarge the system, and officials recognized that it would cost less to dig a new channel than to enlarge the old one once more. In 1889 voters approved the Sanitary District of Chicago (now the Metropolitan Water Reclamation District of Greater Chicago) to implement the new channel scheme. This supra-governmental body proved necessary because the natural drainage area did not conform to Chicago’s political boundary lines. Even with the annexation of adjacent suburbs, the affected area was
much larger than the city of Chicago was ever likely to become. The strategy embodied in the Sanitary District was hardly revolutionary; it continued the same methods, only more effectively and with greater flexibility. Work began on the 28-mile Sanitary and Ship Canal in 1892 and was completed in 1900.

As new territory was annexed, two additional channels (the North Shore and the Calumet-Sag Channels) were added, but continued population and industrial growth would put significant pressure on the sewage-handling capabilities of the fixed-capacity channel system. Within the first ten years of operation it was clear that the district's works were not capable of handling the growing volume of Chicago's domestic and industrial wastes. In the 1910s the district began to construct sewage treatment plants to supplement the channel system. The decade of the 1920s saw the start of construction of the major treatment works that are the foundation of the city’s current wastewater strategy. The Calumet sewage treatment works were placed in operation in 1922, followed by the North Side works (1928), the West Side works (1931), and the Southwest works (1939). A suit against the district was resolved in the U.S. Supreme Court in 1930 and resulted in a reduction of the district's diversion of water to reverse the river. This effectively reversed the district's approach; sewage treatment plants were forced supplemented by the channel system. By 1970 Chicago had the largest sewage treatment facilities in the world.

In 1972, Congress, in amendments to the Water Pollution Control Act, required that water pollution from all sources in urban-industrial areas be controlled. More than 90 percent of the district’s wastewater was treated, but a heavy rainfall or quickly melting snow could still force the district to let raw sewage escape into the lake. The proposed solution was the multi-billion dollar Tunnel and Reservoir Plan, conventionally called "Deep Tunnel." Phase I of TARP, the antipollution phase, which went into operation in 1985, involved the construction of 110 miles of tunnels to capture storm overflow and keep it in the system for processing. Phase II, the anti-flooding phase, required an additional 21 miles of tunnels plus 3 large reservoirs.

Prior to the advent of public works projects in the 1930s, Chicago had spent more on sewage disposal-drainage than any other American city. Today the city has the largest water and sewage treatment works of any city in the world. Many lakefront cities are located at the mouth of a river, so the alternative of reversing a river's flow was, and still is, technologically available. Only Chicago has found this alternative economically feasible.

Louis P. Cain

We thank Chicago Journeymen Plumbers Local Union 130 U.A. for their continuing support.

We also thank our many sponsors who have over the years continued to support the American Society of Sanitary Engineering Illinois Chicago Chapter and the International American Society of Sanitary Engineering. Please use our sponsor resources for all you material needs and professional services when possible. Please see our advertisement pages for contact information.
We will be looking for Sponsors for our Newsletter, (donations Annual Picnic), CEU Classes, In addition to locations for our CEU Classes and Quarterly Membership Meetings. We would like to give our Advertisers first choice on these issues.

Newsletter $500.00 Annually Annual Picnic donations at least $250.00 each
 CEU Classes $350.00 each class

Mail all checks addressed to ASSE Chicago Chapter C/O Michael D. Scherer 328 E. Washington St. Villa Park, IL. 60181-3015

All Board Meetings and Membership Meetings are canceled until further notice.
Here are some forms you are required to fill out if you wish to be an apprentice, plumber, inspector, plumbing or irrigation contractor or education sponsor. Go to the web-site below and scroll down to plumbing forms, and search for which form you may need.

http://www.dph.illinois.gov/forms-publications

- Apprentice Plumber's License Application
- Apprentice Plumber's Application Under JAC
- Apprentice Plumber: Notice of Cancellation of Employment/Supervision
- Plumber's License: Application for Examination
- Plumber's License: Examination Retake Form
- Plumber Application Child Support Certification
- Certified Plumbing Inspector: Application for Examination
- Plumber's License: Application for Reciprocity for the City of Chicago Licensees
- Retired Plumber's License Application
- Plumbing Contractors: Application for Registration
- Plumbing Contractors: Corporation Surety Bond Form
- Plumbing Contractors: Limited Liability Company Surety Bond Form
- Plumbing Contractors: Partnership Surety Bond Form
- Plumbing Contractors: Sole Proprietor Surety Bond Form
- Plumbing Contractors: Affidavit of No Employees
- Worker's Compensation Opt-Out Form
- Irrigation Contractors: Application for Registration
- Irrigation Contractors: Application Child Support Certification
- Irrigation Contractors: Application for Registration of Irrigation Employee
- Irrigation Contractors: Test Certificate Lawn Sprinkler System
- Irrigation Contractors: Notice of Cancellation of Employment Registered Irrigation Employee
- Irrigation Contractors: Affidavit of No Employees
- Irrigation Contractors: Corporation Surety Bond Form
- Irrigation Contractors: Limited Liability Company Surety Bond Form
- Irrigation Contractors: Partnership Surety Bond Form
- Irrigation Contractors: Sole Proprietor Surety Bond Form
- Continuing Education: Application for Registration
- Continuing Education: Electronic Roster for Plumbers
Licensed plumbing professionals serving all of Chicagoland

1-833-PLUM-911

Licensed, bonded & insured
Available 24/7
Ready to answer your call

Highly trained

Plumbers911Chicago.com
Mission

CDC works 24/7 to protect America from health, safety and security threats, both foreign and in the U.S. Whether diseases start at home or abroad, are chronic or acute, curable or preventable, human error or deliberate attack, CDC fights disease and supports communities and citizens to do the same.

CDC increases the health security of our nation. As the nation’s health protection agency, CDC saves lives and protects people from health threats. To accomplish our mission, CDC conducts critical science and provides health information that protects our nation against expensive and dangerous health threats, and responds when these arise.
Advanced Placement

We do our homework when we design solid-surface sink systems. That's why they are a perfect choice for modern school washrooms.

Above-deck access for easy maintenance

Our sinks earn top marks at the best schools

SLOAN.

www.sloanvalve.com

Viega system solutions
Multiple materials, many solutions
One provider

Meeting and exceeding industry standards with every installation

With three choices in sealing materials, Viega systems can be used for gas, compressed air, portable water. Formable for bar or residential applications. Viega's press fit technology is available in multiple materials and connections can be made in less than 10 seconds, saving up to 50% on installation.

And peace of mind on the job with Viega products that include the Smart Connect® feature, allowing installers to easily identify unpressurized connections during pressure testing.

For more information, call 800-976-9619 or visit www.viega.us

VINCE ENGLAND
President

Mid-Continent Marketing

REPCO ASSOCIATES, INC.
Representing manufacturers of quality plumbing products for over 30 years

Brian A. Mazzocchi
CPMR, CSP

1775 W. Armitage Court • Addison, IL 60101
tel: 630.932.9900 • cell: 847.830.4425 • fax: 630.932.9911
email: brian@repcossociates.com
Test Gauge, Inc. is dedicated to providing the Backflow industry with the highest level of satisfaction and technical support. Our team of backflow experts provide customers with service that is unmatched in the industry. We believe that we can better your customer experience by providing you with all the backflow products and information you need, at great prices and exceptional availability.

Our local backflow experts’ extensive knowledge of leaded and lead-free devices and our in-stock repair parts and warranty parts for all the major manufacturers and troubleshooting assistance will help you find the best solution to fit your situation.

Call our backflow experts today or visit us at www.shopbackflow.com/il/

Phone: (866) 836-8692
Address: 1051 E. Main St., Unit 107
East Dundee, IL. 60118
CEU Registration Form 2020

Name: ________________________________

IL PL# (Starts with 058 or J): ________________________________

Email: ________________________________

Billing Address: ________________________________

City: __________________ State: ___________ Zip: ___________

Credit Card Number: ________________________________

Expiration Date: ___________ / ___________ CCV: ___________

Please CHECK which class you would like to attend:
All classes will be from 5pm – 9pm with Dinner included

☐ BACKFLOW REPAIR COURSE $85
 This course is focused on refreshing the Cross Connection Tester on testing procedures as well as hands on repairs for approved assemblies for the state of Illinois. During this class we will be going over our NEW mechanical wall, show you how water pressure fluctuations affect backflow assemblies, how to remedy the situation and be able to see it in a live setting. Also new this year is the Flood Control Integrated System by Wilkins; this system can be designed to shut off a specific water line when a backflow goes into a full dump situation.

- Thursday, January 16th
- Thursday, January 30th
- Thursday, February 13th
- Thursday, February 27th
- Tuesday, March 3rd
- Tuesday, March 17th
- Thursday, April 2nd
- Thursday, April 16th
- Thursday, April 30th

☐ NEW!! LARGE BACKFLOW REPAIR (SMALL GROUP) - Max 12 attendees per class $125 per person
 Small group backflow repair class. Classes will consist of 3 individual groups working with an individual instructor to do hands on testing, diagnosis, and repair of large backflow assemblies only. The repair class will involve repairing of the following backflow assemblies:

 - 4” Febo 825TD
 - 4” Ames 4000SS
 - 3” Watts 009
 - 8” Ames Maxim 400
 - 4” Wilkins 375AST
 - 3” Watts 909

- Tuesday, January 21st
- Tuesday, January 4th
- Tuesday, February 18th
- Tuesday, February 4th
- Thursday, March 12th
- Tuesday, April 7th
- Tuesday, April 21st

Location: Test Gauge, Inc. | 1051 E Main St, Unit 107 | East Dundee, IL 60118
Toll Free: (860) 836-8692 | Local: (847) 836-8090 | Email: salesgroup@testgauge.net
Plumbing Products

Condensing Gas Instantaneous Water Heaters, Indirect Steam and Boiler Water
Domestic Water Heaters

Commercial and Residential Evacuated Tube & Flat Plate Solar Collectors, Controls,
and Accessories

Sump Pumps, Sewage Ejectors, Grinder Pumps, and Packages

Variable Pressure Booster Systems, Hot Water Recirculation, Sump & Sewage Pumps,
Double Wall Heat Exchangers, Balancing Valves, Expansion Tanks

Commercial and Light Commercial Gas Fired and Electric Tank Type Domestic Water
Heaters, Electric Water Heaters

Pressure Reducing Valves, Pressure Blending Valves and Float Valves

Plate & Frame, Brazed Plate, Boiler Water and Steam Indirect Domestic Water Heaters
and ASME Storage Tanks, Electric Water Heaters

Variable Speed Drives

Stainless Steel & Multi-Stage Pumps

Domestic Hot Water Thermostatic Mixing Valves

Flexible Hose Pump Connectors, Expansion Compensators, Wall Penetration Seals

Wall & Floor Mounted, Condensing Gas Water Heaters

Steam and Boiler Indirect Domestic Water Heaters and ASME Storage Tanks, Electric
Water Heaters

Acid Drainline Systems & Acid Dilution Basins

Thermometers & Gauges
ASSE ILLINOIS CHICAGO CHAPTER HAS BEEN INVOLVED FROM THE BEGINNING TO THE END OF EVERY PROJECT SINCE AT LEAST FROM 1918. TAKE PRIDE IN BEING A MEMBER

SPONSOR OUR PICNIC FOR $250.00 HELD IN AUGUST OF EACH YEAR AND RECEIVE A ¼ PAGE ADD IN OUR MONTHLY NEWS LETTER FOR ONE YEAR.
SPONSOR OUR CEU CLASS FOR $350.00 EACH CLASS AND RECEIVE A ¼ PAGE ADD IN OUR MONTHLY NEWS LETTER FOR ONE YEAR. CLASSES WILL BE HELD ONCE EACH QUARTER.
PREVENTION RATHER THAN CURE