American Society of Sanitary Engineering PRODUCT (SEAL) LISTING PROGRAM Factory Audit Inspection Test Report

ASSE STANDARD #1015 - REVISED: 2011 Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies

LABORATORY FILE NUMBER:
LISTEE:
SEAL #:
MODEL # TESTED:
MODEL SIZE:
ADDITIONAL MODEL INFORMATION (i.e. orientation, series, end connections, shut-off valves):
NUMBER OF SAMPLES SUBMITTED: NUMBER OF SAMPLES TESTED:
DATE TESTING BEGAN:
DATE TESTING COMPLETED:

General information and instructions for the testing engineer:

The results within this report apply only to the models listed above.

There may be items for which the judgment of the test engineer will be involved. Should there be a question of compliance with that provision of the standard, a conference with the manufacturer should be arranged to enable a satisfactory solution of the question.

Should disagreement persist and compliance remain in question by the test agency, the agency shall, if the product is in compliance with all other requirements of the standard, file a complete report on the questionable items together with the test report, for evaluation by the ASSE Seal Board. The Seal Board will then review and rule on the question of compliance with the intent of the standard then involved.

Documentation of material compliance must be furnished by the manufacturer. The manufacturer shall furnish to the testing agency, a bill of material which clearly identifies the material of each part included in the product construction. This identification must include any standards which relate thereto.

O No

FIRST SAMPLE TEST RESULTS SECTION III

	-	ic Test of Con	-	g			,	
		nbly was press	surized to:	minutes		psi	(kPa)
	Were there	e any external	leaks from the		O Yes	O No	O Que	stionable
3.5				For DC Assemb	olies		O Yes	O No
		-	lled per Figure	1 <i>?</i> 			O Yes	————
			ter flow for the			GPM		
			essure used fo	r this test? system (if any)			(kPa)
	vviiat pres	saire ioss tilio	agn the piping	System (ii any)	was deducted		(kPa)
	For DCF A		U. J	13			O v	\bigcirc N
			lled per Figure	1?			O Yes	O No
	What was	the rated wat	ter flow for the	e assembly?		GPM	(L/s)
			essure used fo				(kPa)
	What pres	ssure loss thro	ugh the piping	system (if any)	was deducted		(kPa)
	GPM	L/s	loss observed psi	at flows of:				
	05.0	0.32						
	10.0	0.63						
	15.0	0.95						
	20.0	1.26						
	25.0	1.58						
	30.0	1.89						
	35.0	2.21						
	40.0	2.52						
	45.0	2.84						
	50.0	3.15						
Rated Flo								
						psi		kPa)
						·	·	kPa)
	\/\hat \\\ac	e maxiiiidii	1 h1692016 1088			i ivi to rate	a now (D	otti
			ng) for both Do	C and DCF asser	nblies?			
Rated Flo	50.0 w 150% of F 200% of F	3.15 Rated Flow for	r DCF and mar	nifold assemblies observed at flow	ws from (0) G	psi	((b

valve at any point?

	Was there any damage or permanent deformation of the internal component	_	embly?
		O Yes	O No
	Was the assembly on test in complete compliance with the criteria of Sec	tion 3.5?	
		O Yes	O No
3.6	Drip Tightness of First Check		
	What was the initial height of water in the sight glass at test cock #2:	inches (mm)
	What was the initial height of water in the sight glass at test cock #3:	inches (mm)
	The test period was for: minutes.		
	What was the final height difference in the water levels between the sigh	t glasses at te	st cocks
	#2 and #3?	inches (mm)
3.7	Drip Tightness of the Second Check		
	What was the initial height of water in the sight glass at test cock #3:	inches (mm)
	What was the initial height of water in the sight glass at test cock #4:	inches (mm)
	The test period was for: minutes.		
	What was the final height difference in the water levels between the sigh #3 and #4?	t glasses at te	st cocks
		inches (mm)

SECOND SAMPLE TEST RESULTS*

*A second sample shall only be tested if the first sample failed the necessary test sections.

SE	\boldsymbol{c}	ГΙ	റ	NI	
JE	C	ш	U	IA	ш

3.2	The assem	c Test of Con ably was press	nplete Device surized to:			psi	(kPa
	Were there	e any external	leaks from the		Oyes	O No	O Que	estionable
3.5	Was the a	ssembly insta	lled per Figure	For DC Assem			O Yes	О ма
			ter flow for the	•		GPM		L/s
			essure used for			psi	(kPa
	vvnat pres	sure loss thro	ugn the piping	system (if any)	was deducted		(kPa
		ssembly insta	lled per Figure	1?			O Yes	O No
	VA/In a I	the sector of	() (()			CDM	,	1.7-
			ter flow for the essure used fo	•		GPM psi		L/s kPa
					was dodusted		`	
	wildt pics	suite 1033 till 0	ugn the piping	system (if any)	was deducted	f		
	vviidt pros	3ure 1033 trii0	ugn the piping	system (if any)		r psi	(kPa
	For DCF A	.ssemblies & N	Manifold DCF A	Assemblies			(kPa
	For DCF A	.ssemblies & N		Assemblies			(kPa
	For DCF A	ssemblies & N	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM	ssemblies & N the pressure L/s	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0	the pressure	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0	the pressure L/s 0.32 0.63	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0	the pressure L/s 0.32 0.63 0.95	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0 15.0 20.0	L/s 0.32 0.63 0.95 1.26	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0	L/s 0.32 0.63 0.95 1.26 1.58	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0	L/s 0.32 0.63 0.95 1.26 1.58 1.89	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0	L/s 0.32 0.63 0.95 1.26 1.58 1.89 2.21	Manifold DCF A	Assemblies at flows of:			(kPa
	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0	L/s 0.32 0.63 0.95 1.26 1.58 1.89 2.21 2.52	Manifold DCF A	Assemblies at flows of:			(kPa
Rated F	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0	L/s 0.32 0.63 0.95 1.26 1.58 1.89 2.21 2.52 2.84	Manifold DCF A	Assemblies at flows of:			(kPa
Rated F	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0	L/s 0.32 0.63 0.95 1.26 1.58 1.89 2.21 2.52 2.84 3.15	Manifold DCF A loss observed psi psi	Assemblies at flows of: (kPa)		psi	(kPa
Rated F	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0	1.58 1.89 2.21 2.52 2.84 3.15 Rated Flow for Rated Flow for Rated Flow for Rate Rate Rate Rate Rate Rate Rate Rate	r DCF and mar	Assemblies at flows of: (kPa) inifold assemblies		psi psi psi	(kPa
Rated F	For DCF A What was GPM 05.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 Flow 150% of F 200% of F What was	L/s 0.32 0.63 0.95 1.26 1.58 1.89 2.21 2.52 2.84 3.15 Rated Flow for the maximum	r DCF and mar	Assemblies at flows of: (kPa)	S S ws from (0) G	psi psi psi	(kPa

C A!	SSE

	For DCF assemblies, did the pressure drop generally increase from static GPM (3.15 L/s) with a maximum total downward deviation of 10% from	•	
	valve at any point?	O Yes	O No
	Was there any damage or permanent deformation of the internal compon	ents of the ass	embly? O No
	Was the assembly on test in complete compliance with the criteria of Se		0 110
		O Yes	O No
3.6	Drip Tightness of First Check		
	What was the initial height of water in the sight glass at test cock #2:	inches (mm)
	What was the initial height of water in the sight glass at test cock #3:	inches (mm)
	The test period was for: minutes.		
	What was the final height difference in the water levels between the sigh	nt glasses at tes	st cocks
	#2 and #3?	inches (mm)
3.7	Drip Tightness of the Second Check		
	What was the initial height of water in the sight glass at test cock #3:	inches (mm)
	What was the initial height of water in the sight glass at test cock #4:	inches (mm)
	The test period was for: minutes.		
	What was the final height difference in the water levels between the sight #3 and #4?	nt glasses at tes	st cocks
		inches (mm)

TESTING AGENCY:	
ADDRESS:	
PHONE:	FAX:
TEST ENGINEERS:	
We Certify that the evaluations are based on our best judge accurate record of the performance of the device on test.	ments and that the test data recorded is an
SIGNATURE OF THE OFFICIAL OF THE AGENCY:	
TITLE OF THE OFFICIAL:	DATE:
SIGNATURE AND SEAL OF THE REGISTERED PROFESSIONAL ENGINEER SUPERVISING THE LABORATORY EVALUATION:	
SIGNATURE:	
	PE SEAL

*To insert images into document (PE seal and signatures)

Adobe Acrobat Pro users: At the top of the page, go to: Tools > Advanced Editing > TouchUp Object Tool. Once you have selected TouchUp Object Tool, right click within the document and select Place Image. Choose the image you want to place (PE seal or signature) and then select Open. Once the image is in the document, move and re-size the image accordingly. Save and send to ASSE.

Adobe Reader users: Adobe Reader does not allow users to place images into the document. You must print this completed document and then sign and stamp the PE seal by hand. You may then send the completed document to ASSE via fax or mail, or you can scan the completed document and send via e-mail.

COMMENTS: